
MPhil in Machine Learning, Speech and
Language Technology

2015-2016

MODULE COURSEWORK FEEDBACK

Student Name: Module Title:

CRSiD: Module Code:

College: Coursework Number:

I confirm that this piece of work is my own unaided effort and adheres to the Department of
Engineering’s guidelines on plagiarism

Date Marked: Marker's Name(s):

Marker's Comments:

This piece of work has been completed to the following standard (Please circle as appropriate):

 Distinction Pass Fail (C+ - marginal fail)

Overall assessment
(circle grade) Outstanding A+ A A- B+ B C+ C Unsatisfactory

Guideline mark (%) 90-100 80-89 75-79 70-74 65-69 60-64 55-59 50-54 0-49

Penalties 10% of mark for each day late (Sunday excluded)

The assignment grades are given for information only; results are provisional and are subject to
confirmation at the Final Examiners Meeting and by the Department of Engineering Degree
Committee.

Riashat Islam

ri258

St John's

Reinforcement Learning and Decision
Making

MLSALT7

1

Reinforcement Learning Coursework

Riashat Islam ri258@cam.ac.uk

University of Cambridge

1. Introduction

In this work, we consider analysis of the basic rein-
forcement learning algorithms on three di↵erent mod-
els (MDPs). We consider value and policy iteration
and discuss the proof of convergence for these algo-
rithms. We then consider the di↵erence in perfor-
mance between SARSA and Q-Leaning on benchmark
RL tasks such as the cli↵world model. In each section,
we first include a brief explanation of the algorithm,
present code used for implementation and then include
a discussion of results.

1.1. Experimental Setup

Models/Environments: We consider experiments
over three di↵erent benchmark RL tasks. For all the
environments, the agent is allowed 4 discrete actions
in a discrete state space. In the Small World MDP
(model), the goal states (state with maximal reward)
is at the coordinates (4, 4). We consider a constant
reward of �1 in all the states, reward of 10 in the goal
state and a negative reward (cost) of �6 in the bad
state. The smallworld MDP has 17 di↵erent states.
Similarly, the gridworld MDP has 109 di↵erent states,
with the goal state at 93 and pre-defined start state.
We also consider a cli↵world MDP with the usual ac-
tions of up, down, left and right, with a reward of �1
for all transitions, except for a reward of �100 if the
agent enters the cli↵, and a reward of 10 in the goal
state with co-ordinates (5, 9). We always consider dis-
counted MDPs with � = 0.9. Our work also considers
careful fine-tuning of the ✏ parameter for greedy ac-
tion selection as discussed later. We always consider
stochastic discrete policies in a model-based environ-
ment with given transition dynamics.

2. Question A: Value Iteration

In reinforcement learning, value iteration concerns
with finding the optimal policy ⇡ using an iterative
application of the Bellman optimality backup. At each
iteration, value iteration uses synchronous updates for
all the states to update the value function, ie, update

Vk+1(s) from Vk(s0). In our work, we consider using
value iteration over the gridworld model. In order for
value iteration to converge, it requires an infinite num-
ber of iterations to converge to V ⇤. We use the stop-
ping criterion for value iteration that when there are no
further improvements to the value function, or when
the change in value function is less than a very small
positive number in a given sweep, we terminate the al-
gorithm. Value iteration is guaranteed to converge to
an optimal policy for finite MDPs with a discounted
reward. Unlike policy iteration, there is no explicit
policy in value iteration. In our algorithm, we evalu-
ate the policy at each step of the episode as shown by
the code below.

Vk+1(s) = max
a2A

(Ra
s + �(

X

s02S

P

a
ss0Vk(s

0)) (1)

The MATLAB code for value iteration is given be-
low:

% run VI on GridWorld
gridworld;

[v, pi] = valueIteration(model, 1000)

plotVP(v,pi, paramSet)

%value iteration algorithm
function [v, pi] = valueIteration(model, maxit)

% initialize the value function
v = zeros(model.stateCount, 1);

pi = ones(model.stateCount, 1);

old_v = zeros(model.stateCount, 1);

threshold = 1.0000e-22;

for iterations = 1:maxit,

% initialize the policy and the new value function
policy = ones(model.stateCount, 1);

v_ = zeros(model.stateCount, 1);

% perform the Bellman update for each state
for s = 1:model.stateCount,

%compute transition probability
P = reshape(model.P(s,:,:), model.stateCount, 4);

%update value function

Value Iteration, SARSA and Q Learning

[v_(s,:), action] = max(model.R(s,:) +

(model.gamma * P’ * v)’);

%policy evaluated every step
policy(s,:) = action;

end

old_v = v;

v = v_;

pi = policy;

%break condition
%to check convergence of VI algorithm
if v - old_v <= threshold

fprintf(’Value function converged

after \%d iterations\n’,iterations);

break;

end

end

end

Explanation of the Code: We used 1000 iterations
of value iteration, ie, considering 1000 episodes. For
each state in a given episode, the value function is
updated by the following, with the policy ⇡(a|s) being
evaluated by the action that maximizes the expression.
Experimental results are given in section 2.1 below.

[v_(s,:), action] = max(model.R(s,:) +

(model.gamma * P’ * v)’);

To check for convergence, we use a threshold value of
1e�22 to ensure convergence of the value function, such
that the value iteration algorithm stops when there are
no more improvements in the value function. In other
words, when we converge to an optimal value function
V

⇤.

if v - old_v <= threshold

fprintf(’Value function converged after

\%d iterations\n’,iterations);

break;

end

2.1. Experiment Results

The result in figure 1 is shown for the gridworld MDP.
Our algorithm shows the same result for small world as
given in the testing result. In our code, we also show
the number of iterations it took for the value itera-
tion algorithm to converge. We used 1000 iterations
to guarantee convergence of value functions in value
iteration.

Value function can be considered as a goodness mea-
sure of how good it is for an agent to be in a given

Figure 1. Value Iteration - Value Function and Policy for

Grid World MDP

state. At each given state, it is a measure of the ex-
pectation of cumulative rewards over the time steps.
This is shown by the figure 1. In the figure 1, the
colours specify the goodness measure. Regions com-
pletely dark denote that it is bad for the agent to be in
that state, whereas regions marked white shows maxi-
mal goodness (goal state). The lighter the regions, the
better it is for the agent to be in those states.

2.2. Discussion of Results

Figures 1 shows the value function and the pol-
icy (shown by the actions taken at every state) on
the smallworld and gridworld MDPs. For the grid
world, the value function converges after 120 itera-
tions, whereas for the smallworld, it converges after 49
iterations. Certaintly, higher number of iterations for
convergence of value iteration are required in larger
state spaces. The number of iterations required for
convergence is also dependent on the threshold param-
eter used which terminates the algorithm when the im-
provement in value function at every iteration is less
than the threshold. In practice, such conditions are
required for termination of value iteration algorithms.
Using an infinite number of iterations, value iteration
is guaranteed to converge to an optimal V ⇤. The di-
rections of arrows after convergence of value function
shown in figure 1 are therefore the optimal actions to
take at every state.

3. Question B: Policy Iteration

We then consider policy iteration instead of value iter-
ation on the gridworld model. Policy iteration uses an
iterative policy evaluation step to estimate V

⇡ and a
policy improvement step to generate ⇡

0
> ⇡, where ⇡

0

is obtained by a greedy policy improvement step. The

Value Iteration, SARSA and Q Learning

policy evaluation step evaluates the value function for
a given policy ⇡ using an iterative Bellman expectation
backup. The policy improvement step is then the ac-
tion that maximizes the value function, using a greedy
policy improvement step. In other words, policy it-
eration obtains a sequence of continually improving
policies and value functions, where we do policy eval-
uation and improvement separately, while every policy
improvement is guaranteed to be an improvement.

The MATLAB code is included below.

function [v, pi] = policyIteration(model, maxit)

% initialize the value function
v = zeros(model.stateCount, 1);

pi = ones(model.stateCount, 1);

% old_v = zeros(model.stateCount, 1);
policy = ones(model.stateCount, 1);

tol = 0.0000000000000000000001;

%run this extra loop
% to check for convergence
%in policy evaluation and
%policy improvement step
for iterations = 1:maxit,

% Policy Evaluation Step
%with same number of episodes
for i = 1:maxit,

v_ = zeros(model.stateCount, 1);

% perform the Bellman update for each state
for s = 1:model.stateCount

v_(s) = model.R(s, policy(s))

+ (model.gamma*model.P(s,:,policy(s))*v)’;

end

delta = norm(v - v_);

v = v_;

%check for convergence
if delta <= tol

fprintf(’Value function

converged after $\%$ d iterations\n’,i);

break;

end

end

for s = 1:model.stateCount

P =reshape(model.P(s,:,:),model.stateCount,4);

[~, action] =

max(model.R(s,:) + (model.gamma *P’*v)’);

policy(s) = action;

end

end

pi = policy;

v = v_;

end

Explanation of Code: In the code above, there are
two stages of policy iteration. First we evaluate the
value function given the current policy, and then the
policy improvement step is to take the action that
maximizes the value function using a greedy improve-
ment step as below:

[~, action] = max(model.R(s,:)+

(model.gamma * P’ * v)’);

To check for convergence of policy iteration, we again
use a stopping criteria to check if there are no more
improvements in the value function. When there are
no improvements in V

⇡, it also suggests that ⇡

0 = ⇡,
ie, there are no more improvements in the policy from
the greedy policy improvement step.

Sample Output of Code: In our code, we used two
loops to check for convergence of policy iteration. The
policy evaluation step to estimate V

⇡ is done with
same number of iterations as episodes (second loop),
followed by which we do policy improvement. The first
loop further checks when policy improvement step has
converged as well, such that our output looks as below:

Value function converged after 338 iterations

Value function converged after 281 iterations

Value function converged after 261 iterations

Value function converged after 171 iterations

Value function converged after 104 iterations

Value function converged after 88 iterations

Value function converged after 1 iterations

Value function converged after 1 iterations

Value function converged after 1 iterations

From the above we see that, after 88 iterations, the
policy iteration algorithm converges, and there are no
further improvements in the greedy policy improve-
ment step after convergence.

3.1. Experimental Results

Our code above shows the two stages in policy itera-
tion compared to value iteration. In policy iteration,
we first use an iterative policy evaluation method to
estimate V⇡ and then use a greedy policy improvement
step to improve the policy. Similar to value iteration,
the process of policy iteration also always converges to

Value Iteration, SARSA and Q Learning

the optimal value function V

⇤ from which the optimal
⇡

⇤ can be derived.

Figure 2. Policy Iteration on Grid World Model

From our experimental results, we find that the policy
iteration algorithm converges after 88 iterations, when
we are using 1000 iterations for the algorithm, com-
pared to 120 iterations of value iteration algorithm.
In section 3.2.1, we include a comparision of conver-
gence of policy and value iteration and discuss why
the convergence to the optimal value function di↵ers
for these algorithms.

3.2. Discussion of Results

Note that both figures 1 and 2 for the GridWorld MDP
should be the same. This is because, as explained ear-
lier, policy iteration is same as value iteration, except
that policy iteration also considers policy evaluation in
each of the iterations. Therefore, at convergence of V ⇤,
both policy and value iteration should yield the same
optimal policy ⇡

⇤. The value function (denoted by
the colour) and the actions (arrows) should therefore
be the same at convergence, since for a given MDP,
there can only be one optimal policy.

3.2.1. Comparing Convergence of Value and

Policy Iteration

The value iteration algorithm converges after 120 it-
erations. Compared to that, the policy iteration al-
gorithm converges after 88 iterations. This further
validates that using policy iteration, we can converge
faster to the optimal policy ⇡

⇤. The reason is further
explained below: A drawback of using value iteration
is that it can take longer for value iteration algorithms
to converge in some state spaces. This is because the
iterations of value iteration is independent of the ac-
tual policy, and so the algorithm runs even when the
policy is not changing. Since in RL, the goal is to find

the optimal policy, and value functions at each state
provides a tool to find the optimal policy, it is indeed
better to evaluate the policy directly and check for con-
vergence based directly computing the policy. Policy
iteration algorithms therefore provide a good measure
of when value functions have converged, since we can
directly compute the policy. When there are no more
improvements in the actual policy, the value function
is guaranteed to converge. Compared to this, value it-
eration uses no measure of the actual policy and hence
finding the optimal value function takes larger number
of iterations than policy iteration. Policy iteration al-
gorithms converges faster.

4. Question C: Convergence of Policy

and Value Iteration

This section considers the proof of convergence of the
policy iteration algorithm. We denote our policy as
⇡(s) and the Bellman operator as T . As discussed
earlier, policy iteration algorithm involves two steps:
policy improvement followed by policy evaluation.

First we show that by acting greedily means policy im-
provement ⇡0(s) > ⇡(s) for every greedy action. Since
the value function is given as V⇡(s) = Rs + �P

⇡
V ,

greedy action means:

⇡

0(s) = argmax
a

[Rs + P

⇡
V] (2)

therefore, a greedy action leads to an improvement in
the value function:

V⇡0(s) � V⇡(s) (3)

In other words, since Q⇡(s,⇡(s)) = V⇡(s), this means

Q⇡(s,⇡
0(s)) � Q⇡(s,⇡(s)) (4)

We can therefore prove that a policy improvement step
in the policy iteration algorithm leads to V⇡0(s) �
V⇡(s) as follows:

V⇡(s) = Q⇡(s,⇡0(s))

= E⇡[Rt+1 + �V⇡(st+1)|st]

= E⇡0 [Rt+1 + �Q⇡(st+1,⇡
0(st+1))|st]

= E⇡0 [Rt+1 + �Rt+2 + �

2
Q⇡(st+2,⇡

0(st+2))|st
= E⇡0 [Rt+1 + �Rt+2 + ...|st]

Value Iteration, SARSA and Q Learning

= V⇡0(s)

(5)

The policy improvement step in policy iteration there-
fore guarantees that:

V

⇡k+1 � V

⇡k (6)

Using the Bellman operator this therefore means:

V⇡k = T

⇡k
V

⇡k

V⇡k = TV

⇡k

V⇡k = T

⇡k+1
V

⇡k

(7)

where ⇡k+1 is an improved policy following greedy pol-
icy improvement. We want to show that following each
step of policy improvement, there is an improvement
in the value function given by the Bellman operator as
follows:

V

⇡k T

⇡k+1
V

⇡k (8)

Hence, following the Bellman operator, the improve-
ment of policy from ⇡k to ⇡k+1 shows an improvement
in the value function as given by:

V

⇡k T

⇡k+1
V

⇡k (T⇡k+1)2V ⇡k ... (9)

Hence, we can show that:

V

⇡k limn�>inf(T
⇡k+1)nV ⇡+k = V

⇡k+1 (10)

Following iterations in policy iteration algorithm,
when the policy improvement stops, ie ⇡

0(s) =
⇡(s), or alternatively we can write Q⇡(s,⇡0(s)) =
Q⇡(s,⇡(s)) = V⇡(s). When an optimal policy is
reached following greedy policy improvement steps, it
will satisfy the Bellman optimality equation:

V

⇡k = V

⇤ (11)

So the algorithm stops after finite steps k, when
there is no more improvement in policy improvement
step, and hence the policy evaluation step. This
means convergence of the policy iteration
algorithm. Policy iteration stops when there are no
more improvements by taking a greedy action, and

the Bellman optimality equation is satisfied as given
by equation 11.

There exists only a finite number of policies in a
given MDP. However, there exists only one optimal
deterministic policy for any setting. Since the number
of policies is finite, so the policy iteration algorithm
steps must also converge after a finite k steps as:

V

⇡q = V

⇡q+1 (12)

V

⇡q is a fixed point of T, and since T has a unique
fixed point, we can therefore also deduce that:

V

⇡q = V

⇤ (13)

and hence ⇡q is an optimal policy.

5. Question D: SARSA Algorithm

In this section, we consider the on-policy SARSA algo-
rithm for learning the action value function. SARSA is
a form of Temporal Di↵erence (TD) learning method
where Q function is estimated using the Q evaluated
at the next state and action. SARSA learns directly
from episodes of experience and learns from incom-
plete episodes by bootstrapping unlike Monte Carlo
methods which require complete episodes. This means
using SARSA, we can learn before knowing the final
outcome and can learn online after every step from in-
complete episodes. In the on-policy SARSA method,
we estimate Q⇡ for the policy ⇡ and improve ⇡ greedily
with respect toQ⇡ using an epsilon greedy approach.

In SARSA, at every time step, the policy is evaluated
which is then followed by a epsilon greedy policy im-
provement step, where the Q function is updated as:

Q(s, a) = Q(s, a) + ↵[R+ �Q(s0, a0)�Q(s, a)] (14)

We consider the one step return SARSA algorithm,
which is also guranteed to converge to the optimal
action-value function with appropriately chosen step
size.

For the epsilon-greedy policy improvement step, we
use the following epsilon-greedy approach:

action =

⇢
argmaxa0

Q(s0, a0)��� w.p1�✏

Uniform(A)��� otherwise

Value Iteration, SARSA and Q Learning

We also consider the convergence properties of SARSA
algorithm later in section 7, by considering the con-
vergence of the cumulative reward objective function.
The convergence of the SARSA algorithm depends on
the Q function. SARSA algorithm is guaranteed to
converge to an optimal Q and hence optimal policy as
long as all the state-action pairs in the environment
are visited an infinite number of times. This how-
ever depends on the exploration-exploitation tradeo↵.
By considering a greedy policy with a carefully fine
tuned ✏ parameter, we can balance the exploration-
exploitation, such that the states action pairs are vis-
ited large number of times. In section 5.1 below, we
show results of the SARSA algorithm on the small-
world MDP. We here show results for both fixed and
decaying ↵ step size and greedy exploration ✏ param-
eters.

The MATLAB code for SARSA is given below:

% sarsa on SmallWorld
smallworld;

[v, pi, ~] = sarsa(model, 1000, 1000);

plotVP(v,pi, paramSet)

%SARSA Algorithm
function [v, pi, Cum_Rwd] =

sarsa(model, maxit, maxeps)

% initialize the value function
Q = zeros(model.stateCount, 4);

pi = ones(model.stateCount, 1);

alpha = 1;

policy = ones(model.stateCount, 1);

Cum_Rwd = zeros(maxeps, 1);

for i = 1:maxeps,

%every time we reset the episode,
start at the given startState

%get Start State
s = model.startState;

%OR INITIALIZE ACTION ARBITRARILY
a = 1;

%% initialize the first action
%%greedily as well
%%a = epsilon_greedy_policy(Q(s,:));

%FOR EACH STEP OF EPISODE
for iter = 1:maxit,

p = 0;

r = rand;

for next_state = 1:model.stateCount,

p = p + model.P(s, next_state, a);

if r <= p,

break;

end

end

%TAKE ACTION, OBSERVE S’ AND R
s_ = next_state;

%get R with given a
reward = model.R(s,a);

%taking discounted cum rewards
Cum_Rwd(i) = Cum_Rwd(i) + model.gamma * reward;

%CHOOSE A’ FROM S’ USING GREEDY POLICY
a_ = epsilon_greedy_policy(Q(s_,:), iter);

alpha = 1/iter;

% IMPLEMENT THE UPDATE RULE FOR Q HERE.
Q(s,a) = Q(s,a) + alpha *

[reward + model.gamma * Q(s_, a_) - Q(s,a)];

s = s_;

a = a_;

[~, idx] = max(Q(s,:));

policy(s) = idx;

q = Q(:, idx);

if s == model.goalState

break;

end

end

end

pi = policy;

v = q;

end

The MATLAB code for the epsilon greedy policy is
given below:

function action = epsilon_greedy_policy(Q, iter)

all_actions = [1 2 3 4];

epsilon = 1/iter;

probability = rand();

if probability < (1 - epsilon)

[~, action] = max(Q);

else

action = all_actions(randi(length(all_actions)));

end

end

Value Iteration, SARSA and Q Learning

Explanation of Code: In the SARSA code
above, we use an adaptive learning rate with ↵ =
1/iter, with SARSA run for 1000 iterations and
1000 steps within each episode. The function ep-

silon greedy policy is the function to take either
the random exploratory action given by action =
allactions(randi(length(allactions))); or the exploita-
tion action given by max(Q), the choice of which de-
pends on whether the probability is less than 1 � ✏.
The variable CumRwd(i) keeps count of the total dis-
counted sum of rewards, which is further used to plot
how the cumulative reward varies with the number of
episodes.

5.1. Experimental Results

For the SARSA algorithm, we use Maxit = 1000 steps
within each an episode, and use MaxEps = 1000
episodes in total for ensuring convergence of the Q
function. Also note that, in our algorithm, instead
of initializing the action arbitrarily with a = 1, we
can use an epsilon-greedy action at the beginning of
each episode as well. This ensures that in subsequent
episodes, the first action is also chosen greedily in the
first step of each episode.

Figure 3 shows SARSA algorithm on the SmallWorld
MDP with decaying values of step sizes and epsilon pa-
rameters. Figure 4 further uses fixed step sizes and ep-
silon parameters. The significance of these two choices,
and its importance is further discussed in section 5.2
below.

Figure 3. SARSA Algorithm on Small World Model, De-

caying ✏ = 1/iter and ↵ = 1/iter parameters

Figure 4 further shows how the value functions and
policy at every state changes with fixed step size and
epsilon parameters, instead of decaying values.

Figure 4. SARSA Algorithm on Small World Model, ✏ =

0.4, ↵ = 0.2

5.2. Discussion of Results

The results in figure 3 are using an decaying epsilon
greedy parameter ✏ = 1/iter, in which the ✏ parameter
decays with the number of steps in each episode.
The ↵ parameter is also chosen to be decaying as
↵ = 1/iter. This is practical since it means that at
the beginning of each episode, the agent is encouraged
to explore more of the environment since it has not
visited all the states yet. A large value of ✏ encourages
more exploration since the probability of choosing
an action from a uniform distribution is higher, as
given by the conditions for action selection given
above. However, at later stages of a given episode,
ie, later steps within an episode, the agent has
already explored the environment, and now should
be encoured to exploit more of the given information.
This is achieved by smaller ✏ values such that the
exploitation can be done by choosing an action that
maximizes the Q function.

Similarly, a high step size ↵ at the start of an
episode ensures faster to achieve convergence of the
Q function. The Q function is updated at every step
in the SARSA algorithm (similar to doing stochastic
gradient ascent). However, at later stages of a given
episode, smaller values of ↵ ensures that the optimal
Q function can be reached. Note: In RL, we always
consider trying to achieve the highest local optima
of Q function (or J(✓) in case of policy gradient
methods), since achieving the globally optimal policy
is quite di�cult due to the non-convex functions.

Figure 4 further shows results when choosing a
constant ✏ and ↵ parameters. A constant ✏ value
means that we are encouring the agent to explore

Value Iteration, SARSA and Q Learning

as much in later stages of an episode even after
having visited most of the states. Such e↵ect is more
apparent in small state spaces such as in the small
world MDP. In a small world MDP with small state
space compared to grid world, exploration at later
stages of an episode should be less encouraged since
the agent must have visited all the states already (we
have also chosen 1000 steps within an episode with
a breaking condition of ending the episode once the
goal state has been reached). A fixed ↵ value also
does not necessarily ensure convergence to optimal Q
function since a small step size should be required to
update Q at later steps in the episode to ensure good
convergence properties.

Comparing results of SARSA on figure 3 and 4, we can
therefore see that a decaying ✏ and ↵ parameter should
be more feasible. Figure 4 shows lower value functions
even near the goal state (darker regions) compared to
figure 3. Figure 3 shows higher value functions near
the goal states (lighter regions near goal state) which
suggests better convergence of Q function with decay-
ing parameter values.

5.3. Extension: 2-Step SARSA Algorithm

In this section, we include an extension from the
SARSA algorithm (not part of the coursework), in
which we consider the 2-step SARSA algorithm.
Unlike 1-step SARSA, where we consider Rt+1 +
�Q(st+1, at+1) for the Q function update, here we
consider taking two steps forward such that the
Q function is updated with respect to Rt+1 +
�Rt+2�

2
Q(st+2, at+2) such that the Q function update

becomes:

Q(s, a) = Q(s, a)+↵[Rt+1+�Rt+2+�

2
Q(st+2, at+2)�Q(s, a)]

(16)

Here, we consider showing results of the 2-step SARSA
algorithm on the GridWorld MDP (to analyze SARSA
on larger state space), using decaying ✏ and ↵ param-
eters, with 1000 episodes, and 1000 steps within an
episode. In later section, we will also compare how
the cumulative reward changes with the number of
episodes for the 2-step SARSA algorithm. Below, we
present the results for the 2-step SARSA on the grid
world model.

Compared to SARSA, the following snippets of code
are the only di↵erence for the 2-STEP SARSA algo-
rithm.

s_ = next_state;

Figure 5. Extension: 2-Step SARSA Algorithm on Grid

World Model

reward = model.R(s,a);

a_ = epsilon_greedy_policy(Q(s_,:), maxit);

% 2nd step of SARSA
for two_step_state = 1:model.stateCount,

p_2 = p_2 + model.P(s_, two_step_state, a_);

if r_q <= p_2,

break;

end

end

s_2 = two_step_state;

reward_2 = model.R(s_2,a_);

a_2 = epsilon_greedy_policy(Q(s_2,:), maxit);

Q(s,a) = Q(s,a) +

alpha/iter * [reward + model.gamma* reward_2

+ model.gamma.^2 * Q(s_2, a_2) - Q(s,a)];

5.4. Extension 2: SARSA(�) Algorithm

We then considered another extension to implement
the SARSA(�) algorithm which considers combining
all the n-step returns and uses a weight of (1��)�n�1

for the Forward-View Sarsa (�) algorithm. The � pa-
rameter in SARSA (�) is another parameter to fin-tune
(not considered here). Results of SARSA (�) on the
gridworld MDP is shown in figure 6 below.

In SARSA (�), an eligibility tree is considered to keep
count of the states and actions that have been visited
in an episode. The Q function is then updated with
respect to the eligibility tree as well as shown by the
code snippet below. Details not discussed here due to
limit considerations.

Delta = reward +

(model.gamma * Q(s_, a_) - Q(s,a));

Value Iteration, SARSA and Q Learning

Figure 6. Extension: Sarsa (�) on Grid World Model

eligibility(s,a) = eligibility(s,a) + 1;

for m = 1:model.stateCount

for n = 1:4

Q(m,n) = Q(m,n) +

alpha/iter * Delta * eligibility(m,n);

eligibility(m,n) = model.gamma *

lambda * eligibility(m,n);

end

end

6. Question E: Q-Learning Algorithm

We then consider o↵-policy learning of action-values
Q(s,a) where Q(s,a) direclty approximates Q

⇤ inde-
pendent of the policy being valued. This means that
even though the policy ⇡ determines which states and
actions are visited, the Q function is updated directly
towards a value of alternative action. The next action
is chosen using a behaviour o↵-policy while we con-
sider an alternative successofr action and update the
Q(s,a) towards value of the alternative action. The be-
haviour policy still follows an epsilon greedy policy for
exploration. However, the target policy is now greedy
with respect to Q(s,a). In other words, the behaviour
policy is determined by epsilon-greedily ensuring suf-
ficient exploration, while the target policy is obtained
by argmaxa0

Q(st+1, a
0).

The Q learning target therefore simplifies as:

TargetQ = Rt+1 + �Q(st+1, argmax
a0

Q(st+1, a
0))

(17)

which therefore further means:

TargetQ = Rt+1 +max
a0

�Q(st+1, a
0) (18)

The MATLAB code for our implementation of Q-
learning is given below:

function [v, pi, Cum_Rwd] =

qLearning(model, maxit, maxeps)

% initialize the value function
Q = zeros(model.stateCount, 4);

pi = ones(model.stateCount, 1);

policy = ones(model.stateCount, 1);

Cum_Rwd = zeros(maxeps, 1);

for i = 1:maxeps,

% every time we reset the episode,
%start at the given startState
s = model.startState;

%initialize a arbitrarily
a=1;

%repeat for each step of episode
for j = 1:maxit

p = 0;

r = rand;

for s_ = 1:model.stateCount,

p = p + model.P(s, s_, a);

if r <= p,

break;

end

end

%get action from behaviour policy
%- epsilon_greedy wrt Q(s,a)

%action from behaviour policy
a_ = epsilon_greedy_policy(Q(s, :), j);

%take action, observe r
Reward = model.R(s,a);

Cum_Rwd(i) = Cum_Rwd(i)

+ model.gamma * Reward;

TargetQ = Reward +

model.gamma * max(Q(s_, :));

alpha = 1/j;

Q(s,a) = Q(s,a) +

alpha * (TargetQ - Q(s,a));

s = s_;

a = a_;

Value Iteration, SARSA and Q Learning

[~, idx] = max(Q(s,:));

policy(s,:) = idx;

q = Q(:, idx);

% SHOULD WE BREAK OUT OF THE LOOP?
if s == model.goalState

break;

end

end

end

pi = policy;

v = q;

end

Explanation of the Code: The Q-learning code uses
an o↵-policy to explore the environment, and the Q
function update is taken with respect to maximizing
the o↵-policy action as given in the code above below.
Note again we use a learning rate for the Q funciton
update which depends on the number of iterations.
This is to ensure better convergence of the Q function,
as the equation below is same as doing gradient ascent,
but for Q functions in tabular form. The update of Q
function being the same as gradient ascent, and hence
the requirement to choose learning rates properly, is
more apparent when considering Q function approxi-
mation with parameters w, instead of tabular forms.

TargetQ = Reward +

model.gamma * max(Q(s_, :));

alpha = 1/j;

Q(s,a) = Q(s,a) +

alpha * (TargetQ - Q(s,a));

6.1. Experimental Results

Below we present the results for learning the value
function and policy using Q-learning on both small-
world MDP. For our experiments, we again used de-
caying = 1/iter and ↵ = 1/iter parameters for reasons
explained earlier. Figure 7 shows the value function
and policy obtained in the smallworld MDP by o↵-
policy Q-learning. For our experiments, we again used
1000 episodes and 1000 steps within each episode.

6.2. Discussion of Results

In Q-learning, one key issue of convergence is that all
state action pairs need to be continually updated, since
the learned Q function directly approximates to Q

⇤.

In section 7 below, we compare the performance of our
Q learning and SARSA algorithm on the cli↵world

Figure 7. Q-Learning on Small World MDP

MDP, by analyzing how the cumulative rewards
obtained for each episode varies for the on-policy and
o↵-policy algorithms.

In section 7 we further argue that the ✏ exploration
parameter has a greater influence in Q-learning
compared to SARSA methods when we compare
cumulative rewards over number of episodes. We
show that exploration-exploitation plays a more
significant role in o↵-policy Q-learning compared to
on-policy SARSA methods. This is because the target
Q function in Q function update involves maximizing
over the o↵-policy actions, and hence more explo-
ration of the unknown environment has significance
in convergence of Q function to an optimal policy.

7. Question F: SARSA vs Q Learning

In this section, we compare the cumulative rewards ob-
tained from each episode for both the SARSA and the
Q-Learning algorithms. The cumulative reward is ob-
tained by calculating the rewards with every (s, a) pair
visited by the agent. The convergence of the cumula-
tive reward function J(⇡) shows that using SARSA
and Q-Learning, we can also converge to an optimal
Q function. When J(⇡) becomes constant or steady,
it indicates that the optimal policy has been achived,
such that with more episodes, no other better policy
can be achieved.

The MATLAB code below shows the how the dis-
counted cumulative reward is calculated with number
of episodes (also shown previously in code for SARSA
and Q-Learning).

Cum_Rwd(i) = Cum_Rwd(i)

+ model.gamma * reward;

Value Iteration, SARSA and Q Learning

Notice that the epsilon parameters determines the
amount of exploration and exploitation in the un-
known environment. Additionally, the step size ↵ in
the update of the action-value function determines
how quickly we Q function converges to an optimal
Q

⇤. Convergence of the Q function determines how
quickly we can converge to an optimal policy. Hence
fine tuning of the ✏ and ↵ parameters is required to
achieve good performance on the cli↵world, due to
the higher state space in this model. Additionally,
since the updates of the Q function depends on the
random greedy action and a maximization over the
Q function, the cumulative reward achieved with
SARSA or Q-learning is not always smoothed out.

In order to take account of the above issues, we
ran our experiments with di↵erent combinations
of ✏ and ↵ parameters. For each experiment, we
ran the same experiment with the same number
of episodes and iterations within each episode for
upto 50 times and then took the average cumula-
tive reward to smooth out the results on the cli↵world.

Below we also present our results of how the ✏ parame-
ter determines the amount of exploration and exploita-
tion in the environment. A very small value of epsilon
leads to more exploitation since a = argmaxa Q(s0, a0)
with probability 1 � ✏ is chosen with a higher proba-
bility. Compared to that, if ✏ values are too high, then
this leads to more exploraation of the state space and
less exploitation of the states that have already been
visited.

7.1. Experimental Results

First, we present the results in figure 8 comparing Q-
learning and SARSA algorithm on the cli↵world MDP
given by figure 8. The result below in figure 8 is ob-
tained using an ↵ = 0.2 and ✏ = 0.4 and experiments
averaged over 50 iterations to smooth out. We used
500 episodes and 500 iterations or steps within each
episode for both SARSA and Q-Learning for all the 50
iterations. The ✏ = 0.4 ensures a balanced trade-o↵
between exploration and exploitation, and this is vali-
dated further by the results below. Notice that, unlike
before, we used 500 iterations since the cumulative re-
ward scale depends on the number of iterations within
each episode (reward of �1 for every transition). The
figures show the discounted cumulative reward with
the number of episodes.

The lower part of the figure shows the performance
of the Sarsa and Q-learning methods with "-greedy
action selection. After an initial transient, Q-learning

Figure 8. Cumulative Rewards: Q-Learning and SARA on

Cli↵World MDP

learns values for the optimal policy, that which travels
right along the edge of the cli↵. Unfortunately,
this results in its occasionally falling o↵ the cli↵
because of the "-greedy action selection. Sarsa, on the
other hand, takes the action selection into account
and learns the longer but safer path through the
upper part of the grid. Although Q-learning actually
learns the values of the optimal policy, its on-line
performance is worse than that of Sarsa, which learns
the roundabout policy. Of course, if " were gradually
reduced, then both methods would asymptotically
converge to the optimal policy.

We also evaluated our Q-learning and SARSA algo-
rithms with varying ✏ and ↵ parameters and compared
how the convergence of the Q function and hence cu-
mulative reward values depend on it. Figure 9 below
shows results with decaying ✏ and ↵ parameters.

Figure 9. Cumulative Rewards: Q-Learning and SARA on

Cli↵World MDP with Decaying ✏ and ↵

We then present the results of how the performance of

Value Iteration, SARSA and Q Learning

the agent for finding an optimal Q and hence optimal
policy, in both Q-learning and SARSA is dependent on
the value of step size ↵ and exploration parameter ✏.
In figure 10 and 10, an epsilon value of 0.6 is used with
varying step sizes ↵ parameters. We varied the same
number of step sizes, and notice significant di↵erences
in how the ✏ parameter has a higher e↵ect during Q-
learning compared to SARSA algorithm.

Figure 10. SARSA with ✏ = 0.6 with varying step sizes on

Cli↵World MDP

Figure 11. Q-Learning with ✏ = 0.6 with varying step sizes

on Cli↵World MDP

Finally we present the results with an ✏ parame-
ter of 0.1 for both the SARSA and Q-Learning. A
small value of epsilon encourages more exploitation of
the state space. Figures 12 and 13 shows how the
exploration-exploitation tradeo↵ plays a more signifi-
cance role in o↵-policy Q-learning.

7.1.1. Extension

We briefly include the cumulative rewards obtained
from the di↵erent types of SARSA algorithms we im-
plemented before. Result in figure 14 shows compari-
son of the SARSA algorithms. Since the cli↵world is

Figure 12. SARSA with ✏ = 0.1 with varying step sizes on

Cli↵World MDP

Figure 13. Q-Learning with ✏ = 0.1 with varying step sizes

on Cli↵World MDP

a relatively small MDP, significant di↵erences cannot
be observed. We expect that on a larger and higher
dimensional state space, the di↵erent types of SARSA
algorithms will have a more significant e↵ect in con-
vergence to an optimal Q function.

7.2. Discussion of Results

The experimental result in figure 8 shows how the
learning performance of the agent, and hence the
cumulative reward obtained, varies depending on
whether the action-value functions are updated using
on-policy or o↵-policy. Figure 8 shows that SARSA
learns better and is good at avoiding the bad states
compared to Q-learning. This is because the Q
function in SARSA is updated w.r.t to the on-policy
that maximizes the Q function. In other words,
each step of SARSA update is dependent on the Q
function obtained by the states and actions visited.
Compared to that, in Q-learning, the Q function
is updated w.r.t an o↵-policy without using actions

Value Iteration, SARSA and Q Learning

Figure 14. Comparison of 1-Step SARSA, 2-Step SARSA

and SARSA(�) Algorithms

selected by the exploratory policy. In other words,
the Q function update is made by maximizing the
actions from o↵-policy, ie, maximizing over the action
that depends on the exploration-exploitation trade-o↵.

Compared to Q-learning, SARSA learns directly from
episodes of experience and can learn from incomplete
episodes, and hence we can learn before knowing the
final outcome. This on-policy method further makes
SARSA more suitable to avoid bad states with low or
negative rewards in the environment.

Figure 8 therefore justifires that Q-learning is more
concerned with the exploration of the environment,
and it does not care about the rewards it obtains while
it is learning. During learning, Q-learning tries to
update Q depending on the exploratory actions from
the behaviour o↵-policy, which further makes it more
prone to get into bad states while it is learning - hence
achieving lower cumulative reward while it is learning.
However, once Q-learning learns well to avoid bad
states, it reaches a maximal cumulative reward close
to SARSA. Both the algorithms are guaranteed to
converge to an optimal Q⇤ under su�cient conditions.

Also, note that the cumulative reward scale starts from
very large negative values. This is because at the be-
ginning when the agent has not learned about the en-
vironment, it is more likely for it to fall down the cli↵
which has a reward of �100. The larger the num-
ber of iterations used within each episode, due to ex-
ploratory actions, the agent is often likely to fall o↵ the
cli↵. However, as the learned Q function improves, the
agent starts avoiding falling o↵ the cli↵.

Figure 9 further shows how the Q-learning and SARA
algorithms are dependent on the exploration param-

eter ✏. Our hypothesis is that the ✏ parameter has
a greater e↵ect in Q-learning compared to SARSA.
Figure 9 shows that Q-learning is more heavily
a↵ected if the ✏ parameter is not well-tuned. This is
because since the Q-function updates in Q-learning is
more dependent on the exploratory o↵-policy, hence
the amount of exploration-exploitation has more e↵ect
in Q-learning. Figure 9 shows learning with decaying
exploratory parameter, such that exploration is
more encouraged initially, while exploitation is more
encouraged towards the end of learning episodes.

This hypothesis can be further evaluated by the figures
10, 11, 12 and 13. Comparing figure 11 and 13, figure
11 shows that even if the ↵ step-size parameter is
carefully fine-tuned, the large ✏ parameters makes the
agent more prone to going into bad stages, compared
to figure 13 when the ✏ parameter is chosen to be
low. This further evaluates the fact that Q-learning
takes less account of bad states while it is learning.
Compared to that, figure 10 and ?? always shows that
with proper step-sizes, the cumulative reward is less
a↵ected by the ✏ parameters.

Our results therfore proves that on-policy learning
such as SARSA is more e↵ective to avoid bad states
in the MDP, and reaches a better cumulative re-
ward while learning. Compared to that, Q-learning
performs well once it learns completely, although
due to the higheer dependence on the exploration-
exploitation tradeo↵, it is more prone to falling into
the bad states in the environment. We have also shown
that the ✏ exploration paramter has a greater signifi-
ance in o↵-policy learning since the Q function updates
is done w.r.t exploratory actions in Q-learning. Our
results have also examined the influence of well-tuned
↵ and ✏ parameters to achieve good learning perfor-
mance.

8. Summary

We therefore examined the convergence and perfor-
mance of policy and value iteration algorithms, and
discuss how the convergence of these algorithms to the
optimal value function depends on the number of iter-
ations used. Furthermore, we evaluated the di↵erence
between on-policy SARSA and o↵-policy Q-learning
algorithms and showed how the performance of these
algorithms depends on the exploration-exploitation
tradeo↵, and on learning rates. Our experiments were
evaluted on benchmark reinforcement learning tasks
such as a smallworld, gridworld and a cli↵world MDP
to analyze the performance of our algorithms.

