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Abstract

Deep generative latent variable models have
recently gained significant interest due to de-
velopment of efficient and scalable variational
inference methods. Variational methods inv-
ole maximization of the lower bound on the
log-likelihood. However, until recently, di-
rected latent variable model were difficult to
train on large datasets. In this work, we
provide an overview of several recent meth-
ods that have been developed for perform-
ing stochastic variational inference on large
datasets. We provide an overview of theo-
retical and experimental results for provid-
ing a benchmark comparison of the varia-
tional inference methods based on feedfor-
ward neural networks. All of the approaches
in comparison considers maximizing the vari-
ational lower bound by jointly training the
model and the inference network. The meth-
ods in comparison are all applied on the
MNIST dataset as a benchmark comparison.
We implemented our own approach to the
Auto-Encoding Variational Bayes algorithm
(Kingma & Welling, 2013), and compared it
with other approaches. Our experimental re-
sults show the significance of the different
variance reduction techniques for the gradi-
ent estimator of the lower bound of the log
likelihood.

Submitted as part of the Advanced Machine Learning
coursework 2015/16, MPhil Machine Learning, Speech and
Language Technology

1. Introduction

In our work we provide a unifying review of efficient
inference and learning algorithms in directed gener-
ative models with many layers of hidden variables.
It is known that directed latent variable models
are difficult to train on large datasets since exact
inference in such models is intractable. In our work,
we compare the different approaches performing
inference in deep directed graphical models.

Although directed graphical models are better able
to generate observations directly, but there exists a
lack of efficient learning algorithms for directed latent
variable models. Recent work proposed approximate
inference methods based on feedforward neural net-
works to maximize the variational lower bound on
log-likelihood (Mnih & Gregor, 2014). We aim to
provide a unifying review of such methods based on
feedforward networks, and compare the efficiency
of the different learning algorithms. In particular,
we focus on the Auto-Encoding Variational Bayes
(AEVB) algorithm (Kingma & Welling, 2013)

Recent efforts in machine learning research focused on
developing scalable probabilistic models, where using
directed graphical models we want to develop gener-
ative models that can scale to large datasets. Deep
generative models are known to be able to generalize
better to unknown data since the directed counter-
parts can better capture high level abstractions in the
dataset. However, efficient inference algorithms for di-
rected generative models has been a major problem.
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2. Background

2.1. Variational Inference

The task of probabilistic inference in graphical models
is to compute conditional probability distributions
over hidden variables. Latent variable models provide
a powerful approach to probabilistic modelling. A
probabilistic model considers the joint distribution
p(x,h) where x are the visible variables, and h are
the hidden variables. The goal is to train a latent
variable model Pθ(x, h) parameterized by θ. Since the
posterior distribution p(h|x) is complicated to work
with, exact inference in such models is intractable,
and hence maximum likelihood learning cannot be
performed in such models.

Variational methods provide an approach to approx-
imate inference. Since the exact posterior Pθ(h|x)
is intractable, the key idea is to approximate this
intractable distribution with a simpler tractable
distribution Qφ(h|x) with parameters φ. The distri-
bution Qφ(h|x) serves as an approximation to the
exact posterior Pθ(h|x).

We can lower bound the marginal likelihood using
Jensen’s inequality:

logPθ(x) = log
∑
h

Pθ(x, h)

=≥
∑
h

Qφ(h|x) log
Pθ(x, h)

Qφ(h|x)
= EQ[logPθ(x, h)− logQφ(h|x)]

= L(x, θ, φ)

(1)

The lower bound can therefore be written as:

L(x, θ, φ) = logPθ(x)−KL(Qφ(h|x), Pθ(h|x)) (2)

where Kullback-Leibler(KL) divergence is a non-
symmetric measure of the differnece between the two
probability distributions. The goal of variational infer-
nece is to maximize the variational lower bound w.r.t
the approximate distribution Qφ(h|x) or equivalently
minimize the KL divergence. In other words, the KL
divergence is zero when Qφ(h|x) = Pθ(h|x)

2.2. Recognition Model

A recognition model or inference network can learn an
inverse mapping from the observations x to the hidden

variables h. Recognition models can allow for faster
convergence during training and test time. Previously
in most approaches, the variational posterior Qφ(h|x)
for each observation was defined using its own set of
variational parameters φ. However, recent methods
are based on defining a recognition model or infer-
ence network. This means, a feedforward neural net-
work will be used to compute the variational distri-
bution from the observation. The inference network
can perform the mapping from x to Qφ(h|x) with the
constraint that it is easy to sample from the infer-
ence network. Both the parameters θ of the genera-
tive model pθ(x, h) and the recognition model Qφ(h|x)
comes from the neural network.

3. Approach

Having obtained a variational lower bound as shown
in equation 2, the task is to optimize the lower bound;
ie, we want to train the model by locally maximizing
L(x, θ, φ) w.r.t the model and inference parameters θ
and φ. We want to optimize the recognition model in
additon to learning the model parameters to perform
efficient approximate posterior inference.

In order to optimize the lower bound, we want to dif-
ferentiate the lower bound L with respect to inference
network parameters φ and generative model parame-
ters θ. The gradients of the variational bounds are
given as:

∇θL(x) = EQ[∇θ logPθ(x, h)] (3)

for the model parameters θ, and for the inference net-
work parameters is given as:

∇φL(x) = EQ[(logPtheta(x, h)−logQφ(h|x))×∇φ logQφ(h|x)]
(4)

However, since both the gradients in equation 3 and
4 involves expectations, they are intractable. Even
though Monte Carlo approximations to the gradients
can be used, the variance of such gradient estima-
tors are usually very high. In general, optimisation
based approaches are better suited compared to sam-
pling based Monte Carlo methods, and considering
that variational methods are usually more efficient. In
section 4, we will therefore consider the different ap-
proaches that can be taken for maximizing this lower
bound on the log likelihood with respect to the pa-
rameters, such that a better approximation to the in-
tractable posterior distribution can be obtained, for
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both discrete and continuous variables for directed
generative models.

4. Methods

4.1. Auto-Encoding Variational Bayes

A variational autoencoder for approximate posterior
inference was recently proposed in (Kingma & Welling,
2013) involving a generative network and a recogni-
tion network. In this work, both the networks need
to trained jointly such as to maximize the variational
lower bound on the log likelihood. Since optimization
involves finding gradients as shown in equation 3 and
4, in AEVB, it was shown that better optimization can
be achieved by considering a reparameterization of the
variational lower bound to obtain a reparameterized
lower bound estimator. The random hidden variable
h can be reparameterized h ∼ gφ(ε, x) using a trans-
formation that is differentiable gφ(ε, x). This trick is
therefore applied to the lower bound L(θ, φ;x) obtain
the Stochastic Gradient Variational Bayes (SGVB)
estimator LA(θ, φ;x), such that the reparameterized
lower bound is now given as:

LA(θ, φ;x) =
1

L

L∑
l=1

logθ(x
i, hi,l)− log qφ(hi,l|xi) (5)

Considering minibatches, the following estimator of
marginal likelihood lower bound is therefore given by:

L(θ, φ;X) ≈ LM (θ, φ;XM ) =
N

M

M∑
i=1

L̂(θ, φ;xi) (6)

We can therefore obtain gradient estimates
∇θ,φL̂(θ, φ;xi) and perform stochastic optimiza-
tion based using gradient descent. Obtaining better
estimates of the gradient therefore means that the
approximate posterior distribution Qφ(h|x) is a better
approximation to the true posterior as measured by
the KL divergence KL(Qφ(h|x), Pθ(h|x)).

In the variational autoencoder (AEVB), the training
procedure therefore considered a tradeoff between the
data log likelihood log p(x) and the KL divergence
from the true posterior. By doing this, the model
learns a representation where it is easy to approximate
the posterior inference. Additionally, in (Kingma &
Welling, 2013), instead of directly computing the gra-
dient of the log likelihood with respect to recognition

Figure 1. Explaining the Reparameterization Trick in the
Auto-Encoding Variational Bayes Method

network parameters, (Kingma & Welling, 2013) con-
sidered a reparameterization of the recognition distri-
bution in terms of auxiliary variables ε, such that the
samples from the recognition model Qφ(h|x) are a de-
terministic function of the inputs and auxiliary vari-
ables. This approach is valid for a variety of distri-
butions, although only the Gaussian distribution was
considered for experimental purposes. The AEVB al-
gorithm based on stochastic gradients for variational
Bayes (SGBV) has been successfully applied in learn-
ing to draw images in a realistic manner (Gregor et al.,
2015). Figure 1 further shows the significance of the
reparameterization trick and the significance of the
backpropagation algorithm in the neural net param-
eterized by φ to find the approximate gradient estima-
tor ∇φL.

4.1.1. Local Reparameterization Trick

A local reparameterization trick for reducing the vari-
ance of the gradient estimators was further proposed
in (Kingma et al., 2015). In practice, the performance
of stochastic gradient ascent largely depends on the
variance of the gradient estimates. Considering the
parameters θ and φ, the optimization of these param-
eters for maximizing the lower bound involves uncer-
tainty estimates in the paramters. By considering the
local reparameterization trick, the global parameter
uncertainty can be translated to local uncertainty per
datapoint. Uncertainty in the global model and in-
ference network parameters can be considerd as locan
noise which can further be considerd as independent
across datapoints in the mini batch sizes. Such param-
eterizations ensures that the variance in the gradient
estimates is inversely proporitonal to the size of mini
batches. Therefore, a better gradient estimator of the
lower bound, with reduced variance and low computa-
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tional complexity can be achieved by using the local
reparameterization trick considerd in (Kingma et al.,
2015). Such an approach to deep generative mod-
els and scalable variational inference was further used
to develop a probabilistic model for semi-supervised
learning (Kingma et al., 2014).

4.1.2. AEVB: Experimental Results and
Discussion

Using the MNIST dataset, a generative model of im-
ages was trained and we obtained results of the varia-
tional lower bound. In our algorithm, the same neural
network architecture was used for both the generative
model and the recognition model, using 400 hidden
units at each layer. Considering the stochastic varia-
tional Bayes approach, the parameters θ and φ were
obtained by maximizing the gradient ∇θ,φL(θ, φ,X)
of the lower bound estimator. For all the experiments,
we considered mini batch sizes of 100, and a learning
rate of 0.01.

In the variational autoencoder, the number of hidden
units refers to the number of hidden layers of the neu-
ral network that is used in the encoder and decoder.
We then analysed how the generalization performance
depends on the dimensionality of the latent space Nz.
Figure 3 shows that generalisation on MNIST indeed
improves with more latent variables, and does not lead
to overfitting as the generative model contains higher
number of latent variables that needs to be inferred.

Initially, we considered using one sample (L = 1) per
datapoint. However, for comparison with other meth-
ods described below, we further considered using more
than one samples per datapoint. However, the AEVB
approach does not consider any importance sampling
or weighting based approach. The results below shows
how the maximization of the lower bound is depen-
dent on the number of samples per datapoint. Inter-

estingly, the test results for different samples are the
same, showing that the generalisation performance for
AEVB is independent of the number of samples taken
from the recognition model. This is further justified
since AEVB does not consider any weighted sampling
approach, and hence taking L > 1 does not affect test
set performance.

Figure 4. Training lower bound results for different number
of samples L per datapoint

4.2. Neural Variational Inference (NVIL)

Another approach to reducing the variance of the
gradient estimates for maximizing lower bound using
gradient-based optimisation was considerd in Neural
Variational Inference (NVIL) (Mnih & Gregor, 2014).
Neural Variational Inference and learning (Mnih &
Gregor, 2014) also considers training a recognition
network parameterized by a neural network to ap-
proximate the posterior distribution. However, in
addtiion to the model and inference network, NVIL
further considers a third network to predict reward
baselines in the context of the REINFORCE algorithm
(Williams, 1992). It also uses the same variational
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objective as the variational autoencoder (AEVB),
except that a baseline function is used (inspired from
reinforcement learning literature) to reduce variance
instead of considering a reparameterization trick.
However, one drawback of the NVIL approach is that
the estimator requires learning additional parameters
from the baseline function for reducing variance of
gradient estimates.

Similar to the variational autoencoder (AEVB), NVIL
also considers using a feedfoward network for exact
sampling from the variational posterior distribution.
However, one major difference is that NVIL considers
both sampling based and variational methods for
training the directed graphical model. Samples from
the inference or recognition network are used for
obtaining the Monte-Carlo estimates of the gradients,
where the inference network is trained jointly with
the model by maximizing the variational lower bound.

Considering the gradient w.r.t the inference network
parameters, φ shown in equation 4, the difference be-
tween the two distributions logPθ(x, h)− logQφ(h|x)
can be considered as a learning signal for the inference
network parameters:

lφ(x, h) = logPθ(x, h)− logQφ(h|x) (7)

Reducing the baseline c from the learning signal
lφ(x, h), the gradient from equation 4 can therefore
be written as:

∇φL(x) = EQ[(lφ(x, h)− c)∇φ logQφ(h|x)] (8)

The gradient variance can be further reduced by mak-
ing the baseline a function of the observations Cφ(x),
which is further implemened using a neural network
and trained to minimise the expected squared error of
the learning signal EQ[(lφ(x, h) − Cφ(x) − c)2]. This
approach incorporating baselines to variance reduction
is therefore similar to using control variates.

4.3. NVIL: Experimental Results and
Discussion

In this section, we first present the results of the ef-
fectiveness of NVIL algorithm on the MNIST dataset.
For the initial set of experiments, we considerd using
200 latent variables and used 1500 epochs with a
batch size of 100 on the MNIST dataset. The input
dependent baseline functions for reducing variance
was implemented using a neural network with single

hidden layer of 400 tanh units.

We first considered training the generative model
along with the inference network using different op-
timisation approaches. We compared the effectiveness
of the stochastic gradient ascent compared to using
adaptive learning rate based RMSProp and AdaGrad
approaches. Since tuning the learning rate is an ex-
pensive process in training large generative models,
and hence Adagrad and RMSProp can be effective in
automatically adjusting the learning rate parameter.
For the stochastic gradient ascent, the learning rate
was chosen to be 1e−3, as given in the original work.
Due to time constraints, we did not consider a vali-
dation set for fine tuning and selecting the learning
rate parameter. Figure 5 shows the dependence in
convergence in maximizing the lower bound based on
different optimisation techniques. We used adaptive
learning rates since fine-tuning the learning rate is a
difficult task requiring separate validation set.

Figure 5. Fixed and Adaptive Learning rate based optimi-
sation of the lower bound estimator using the Neural Vari-
ational Inference Algorithm

Based on results in figure 5, it is undestood that
while both adaptive learning rates converge signifi-
cantly more quickly than SGD, in this application
RMSProp is able to quickly settle into a significantly
higher log-likelihood than AdaGrad, the convergence
rate of which quickly slows down. This may be be-
cause AdaGrad quickly converges for sparse parame-
ters, even though in a neural network setting many of
the parameters would be dense.

We further show the estimates of the lower bound
depending on the number of latent variables used
in the directed generative model. We considered a
single layer with varying number of latent variables.
Figure 6 further shows that the optimisation of the
lower bound is almost independent of the number of



Variance Reduction Techniques for Variational Inference with Recognition Models

Figure 6. Dependence of NVIL algorithm on the number
of latent variables used in the model

Figure 7. NVIL Optimisation of Lower Bound Estimator
depending on the number of hidden units

latent variables used in the model. The generalisation
performance (not shown here) also shows no signs of
overfitting for higher number of latent variables. This
is similar to the results previously observed in figure 3
for the variational auto-encoder. Figure 7 also shows
that the performance of the NVIL method is also
independent of the number of hidden units used in
each layer of the inference network.

The significance of the variance reduction technique
using a baseline network can be notably observed when
comparing with other variance reduction techniques as
discussed later in section 5

4.4. Importance Weighted Auto-Encoders
(IWAE)

Perhaps the most closely related to the variational
autoencoder approach is the Importance Weighted
Autoencoder (IWAE) (Burda et al., 2015). The IWAE

uses the same architecutre as VAE, except that the
lower bound is derived from importance weighting.
However, one difference is that instead of using a
single sample from the inference network of the
VAE architecure, IWAE uses multiple samples such
that the recognition network now produces multiple
approximate samples and their weights are then
aveaged. By doing so, IWAE can achieve a better
flexible approximate posterior distribution to model
the true posterior distribution of the generative model.

The IWAE considers multiple stochastic hidden layers
for the neural networks, compard to VAE which
considerd only one layer of the network. Similar
to VAE, the conditional distributions here are also
considered as Gaussians. In VAE the means and
variances would be computed by a deterministic
feedforward neural network; however, in IWAE, the
Gaussian recognition distribution q(hl|hl−1, θ) whose
means and covariances are now computed from the
states of the hidden units at the previous layer.

The importance weighted autoencoder also considers
a generative network and a recognition network. How-
ever, the training procedure for IWAE is based on a
different lower bound of log p(x). Since it considers
multiple samples from the recognition network, the
lower bound is now based on the k-sample importance
weighting of the log likelihood given by:

Lk(x) = Eh1,h2,..hk∼q(h|x)[log
1

k

k∑
i=1

p(x, hi)

q(hi|x)
] (9)

where h1, h2, ...hk are now independent samples from
the inference network q(h|x). The term inside the
sum can be written as wi since it is the unnormal-
ized importance weights for the joint distribution. The
lower bound on the marginal log likelihood, consider-
ing Jensen’s inequality, can therefore be written as:

Lk = EQ[log
1

k

k∑
i=1

wi] ≤ logEQ[
1

k

k∑
i=1

wi] (10)

However, since the generative model is parameterized

by θ, we write the weights w as w(x, h, θ) = p(x,h|θ)
q(h|x,θ) .

Again, to optimize the lower bound, we need to find
the estimate of ∇θL(x). The gradient estimate, con-
sidering importance weighting for optimizing the lower
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bound is therefore given as:

∇θL(x) =
1

k

k∑
i=1

∇θ logw(x, h(εi;x, θ), θ) (11)

where the mapping h is represented as a neural net-
work, and equation 11 is a Monte-Carlo estimator for
maximizing the lower bound based on the importance
weighted autoencoder algorithm. The IWAE algo-
rithm, being a variant of VAW, has been shown to
achieve better generalisation performance compared to
the variational autoencoder method due to its ability
to learn richer latent feature representations.

4.4.1. IWAE: Experimental Results and
Discussion

The importance weighted autoencoder provides a
good benchmark for comparing the generative per-
formance between VAE and IWAE using the MNIST
dataset. For experimental purposes, all the stochastic
hidden layers used Gaussian distributions with a
diagonal covariance, and a tanh non-linear activation
function was used for each of the hidden units. Similar
to the original work as in (Burda et al., 2015), we
used Adam for optimisation using minibatches of size
20 and ε = 10−4. For our results, we also considered
the training process to proceed with 3i passes over
the data with a learning rate of 0.001.

For IWAE, we ran our models with 50 units in the hid-
den layer, considering 1 or 2 hidden layers in both the
generative and recognition model. As done in original
work, we also used minibatches of size 20 using Adap
optimisation. For the importance sampling, we con-
sidered comparing how the number of samples taken
from the inference network affects the performance of
IWAE using the gradient estimation considered above.
As done originally, we compared taking samples of
1, 5or50 for both L = 1 and L = 2 stochastic hidden
layers.

Figure 8 shows that taking more than 1 samples k > 1
considerably improved the performance of IWAE on
the MNIST dataset. Previously, for AEVB, we showed
that generalisation performance does not improve for
different number of samples. Using the code available
for IWAE, that includes comparison with AEVB, fig-
ure 8 further shows that with k = 1, both the methods
achieve same performance. Indeed, IWAE can improve
generalisation performance by taking higher number of
samples, while following similar encoder decoder archi-
tecture as the AEVB.

Figure 8. Significance of Number of Samples from Infer-
ence Network - Comparing AEVB and IWAE for 1 and 2
stochastic hidden layers

4.5. Reweighted Wake-Sleep

The reweighted wake sleep algorithm (Bornschein
& Bengio, 2014) is extended from the wake-sleep
algorithm (Hinton et al., 1995), and similar to the
importance weighted auto-encoder, it considers ob-
taining good estimates of the gradient of the lower
bound by sampling the latent variables multiple times
from the recognition model. Therefore, the updates
to the generative network are similar to the gradient
estimates based on the lower bound considered in
IWAE in equation 11. Therefore, RWS is similar
to the importance weighted autoencoder since the
estimator of the log likelihood is based on importance
sampling.

The wake-sleep algorithm was initially proposed by
(Hinton et al., 1995) which was thought of as opti-
mising a biased estimator of the gradient. The wake-
sleep algorithm was initially proposed for training gen-
erative models like the Helmholtz machines and deep
belief network. The original wake-sleep algorithm con-
sidered the following variational bound given by:

log p(x) ≥
∑
h

q(h|x) log
p(x, h)

q(h|x)
(12)

The wake-sleep algorithm considers maximizing this
variational bound, where the wake phase corresponds
to maximizing w.r.t p and in the sleep phase, the
update w.r.t q minimises the reversed KL divergence
KL(p(h|x)||q(h|x)).

The reweighted wake-sleep algorithm instead considers
formulating the likelihood as an importance weighted
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average, such that the unbiased estimator of the
marginal likelihood is now given as:

p(x) =
∑
h

q(h|x)
p(x, h)

q(h|x)
≈ 1

K

K∑
k=1

p(x, hk)

q(hk|x)
(13)

Training of the reweighted wake sleep algorithm con-
sists of two phases. Since both the generative model
p and recognition model q are parameterized by θ and
φ, at first the model pθ is updated for a given qφ.
The gradient ∇θLp(θ, x) of the marginal likelihood
Lp(θ, x) = log pθ(x) is given by:

∇θLp(θ, x) =
1

p(x)
Eh∼q(h|x)[

p(x, h)

q(h|x)
∇θ log pθ(x, h)]

∇θLp(θ, x) =

K∑
k=1

wk∇θ log p(x, hk)

(14)

Once the model pθ is updated, the variance of the esti-
mator can then be reduced by considering updates of
qφ for a given pθ. The recognition network qφ can then
be trained by using maximum likelihood learning with
the loss Lq(φ, x, h) = log qφ(x|h). Similar to above,
gradient w.r.t φ can again be obtained considering im-
portance sampling given by:

∇φLq(φ, x) =

K∑
k=1

wk∇φ log qφ(hk|x) (15)

Additionally, in RWS we consider drawing K samples
from the inference network while NVIL consid-
ered drawing a single sample. One advance of the
reweighted wake sleep algorithm compared to NVIL
is that it does not require maintaining any baseline
network with additional parameters to reduce variance
of gradient estimates.

The reweighted wake sleep algorithm therefore pro-
vides a better training procedure for deep generative
models and obtains a lower bias lower variance estima-
tor of the log-likelihood gradient at the experience of
higher number of samples from the inference network.

4.5.1. RWS: Experimental Results and
Discussion

Using code available online, we re-ran the experi-
ments for the reweighted wake-sleep algorithm. Simi-
lar to original work, we also used the binarized MNIST

Figure 9. Lower Bound estimator on the MNIST using the
Reweighted Wake-Sleep Algorithm

dataset and stochastic gradient descent was used with
minibatch sizes of 25. The RWS algorithm used K = 5
samples during training. The p and q networks in RWS
consisted of three hidden layers. In the original work,
the significance of the number of samples used dur-
ing training were analysed. Due to time constraints,
in this work, we only analysed how the lower bound
estimator on the test set varied with the number of
epochs having trained the model with the RWS algo-
rithm. Figure 9 below shows the test set lower bound
maximization with the number of iterations using the
wake-sleep algorithm. This will later be used in section
5 for comparison with other methods.

Figure 10. Significance of the number of samples from in-
ference network on final negative log-likelihood

Figure 10 further shows the impact on the final neg-
ative log-likelihood as the number of samples are in-
creased from the inference network. Figure 10 suggests
that the training of the model, including the optimiza-
tion of the θ and φ parameters are highly dependent
on the number of samples taken.
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4.6. Related Work

Similar to the algorithms considered above, (Rezende
et al., 2014) also considers scalable inference and
learning in directed generative models. (Rezende
et al., 2014) further developed stochastic backprop-
agation, for backpropagating the gradients for joint
parameterisation of parameters of generative and
recognition models. Stochastic Backpropagation
(Rezende et al., 2014) can be used for efficient infer-
ence as it considers computing gradients involving
expectations through random variables. It therefore
considers the similar task of inference methods with
continuous latent variables by introducing a recogni-
tion model and deriving a lower bound estimator of
the marginal likelihood, with the only difference being
the use of a modified approach to backpropagation
algorithm for the inference network.

Another related work is to consider the multiple sam-
ple approach of IWAE for generative models with
discrete latent variables. Maximization of the lower
bound of the intractable marginal log likelihood is of-
ten done by estimating gradients using samples from
the infernce network or variational posterior distribu-
tion. However, the variational posterior is often not
flexible. If the bound is based on single sample es-
timates, then the samples that explains the observa-
tions poorly are often heavily penalised. Therefore,
the variational posterior distribution covers only the
high probability areas of the true posterior distribu-
tion. Using VIMCO discussed in (Mnih & Rezende,
2016), multiple samples are considered. This is related
to the approach of IWAE. The above effect is min-
imised by averaging over multiple samples to compute
the marginal likelihood estiamtes such that the lower
bound is tighter as the number of samples increases.
This approach based on averaging over independent
samples is called Monte-Carlo objectives as discussed
in (Mnih & Rezende, 2016). It introduces an unbiased
gradient estimator for multiple-sample objective func-
tions and therefore can reduce variance of the gradient
estimator, instead of having to introduce a baseline
network such as in NVIL that introduces additional
parameters.

5. Comparison of Experimental Results

Figure 11 shows the generalisation performance of the
different scalable variational infernece methods on the
MNIST dataset. Figure 11 shows the different con-
vergence guarantees of the maximization of the lower
bound estimator by jointly optimizing for the param-
eters θ and φ in generative and recognition model.

Figure 11. Comparison of Generalisation performance of
AEVB, NVIL and RWS

Comparing for the methods above, our results show
that the reweighted wake-sleep algorithm, consider-
ing optimisation using multiple-samples can outweigh
the other methods based on the reparameterisation
trick and the baseline network. Since IWAE is a
similar multiple-sampling based approach, and due to
time constraints, we only consider comparison between
AEVB, NVIL and RWS here. The different algo-
rithms in figure 11 have different parameter configu-
rations. In figure 11, AEVB uses a latent space di-
mension of 100, while NVIL uses 500 latent variables,
with a single layer consisting of 400 hidden units, and
optimisation performed by stochastic gradient ascent.
For the reweighted wake-sleep algorithm, we trained
the model with K = 100 training samples, we used
K = 5000 samples with a minibatch of size 25. Pre-
viously, for the experimental results comparing IWAE
and AEVB as shown in figure 8 previously, we also
showed that the importance sampling based approach
can obtain better gradient estimates for maximizing
the lower bound compared the AEVB method.

6. Discussion and Future Work

In our work, we provided a unifying review of some of
the recent approaches for estimating the variational
lower bound for efficient approximate inference in deep
directed generative models. In AEVB, we demon-
strated how it uses a gradient estimator (SGVB)
and a reparameterization trick such that the gradient
can be found for standard stochastic gradient ascent
methods. While AEVB can be used in continuous
latent variable models, NVIL, on the other hand, is
only applicable to discrete binary latent variables.
However, instead of introducing a reparameterization
trick, NVIL simply considered including a baseline
network in the gradient estimator to reduce variance
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and jointly optimize both the inference and generative
network. Once considerable drawback, however,
is the need to also estimate the parameters of the
feedforward baseline network. The NVIL however
can approximate the true posterior with more flexible
distributions, since it combines both sampling and
variational methods.

The importance weighted auto-encoder is an elegant
variant of the VAE, as it uses the same architecture,
but instead considers multiple samples to maximize a
tighter log likelihood lower bound that can be derived
using an importance sampling approach. Comparing
AEVB with IWAE, it was also shown that for the same
number of stochastic hidden layers, IWAE can learn
richer latent representations and acheive a better test
performance compared to AEVB. The use of multiple
samples to approximate the posterior in IWAE gives
it better flexibility to model complex posterior distri-
butions.

The comparison of the different methods shown in fig-
ure 11 shows that the multiple sampling based ap-
proach, considering importance sampling, can gen-
eralise better compared to ther other methods that
uses a baseline network and the reparameterisation
trick. Figure 11 further suggests that the gradient es-
timates of the lower bound are better estimated con-
sidering importance sampling, and even though NVIL
and AEVB considered variance reduction techniques,
they cannot outweigh benefits of optimisation based on
multiple samples. Figures 11 and 8 shown previously
suggests that approaches based on multiple-samples
can achieve gradient estimates with a lower variance,
compared to the other variance reduction techniques.

6.1. Extensions

Variational Inference for Monte-Carlo Objec-
tives (Mnih & Rezende, 2016): VIMCO is
another scalable variational inference method that
could be considered as a benchmark for comparison.
VIMCO is further related to IWAE, where it also
considers an importance sampling approach to esti-
amte the log likelihood. However, VIMCO considers
extending IWAE to discrete latent variables. It would
be interesting to analyse how VIMCO performs better
than IWAE for discrete variables, and why it may
provide a more effective gradient estimator compared
to single sampling based approaches such as NVIL
and AEVB.

Wake-Sleep Algorithm (Hinton et al., 1995):
The original AEVB work uses the wake-sleep algo-

rithm as a benchmark for comparison, as it employs
the same recognition model as the wake-sleep algo-
rithm. It would be interesting to observe how the
NVIL and multiple sampling approaches like IWAE
and RWS may compare to the wake-sleep algorithm
on the MNIST dataset.

Other Datasets: We only compared the methods
above on the full MNIST dataset. If time allows, it
would be interesting whether the same trend and com-
parision in results are also observed on other datasets,
such as the Frey Faces dataset or the Omniglot dataset
of handwritten characters. By comparing our methods
applied on other datasets, a more uniform comparison
benchmark can be achieved for all the scalable varia-
tional inference methods considered for deep directed
generative models.

6.2. Future Work

All the recognition models used in the above methods
uses a neural network with weights φ to find an
approximate to the true posterior. For example,
the AEVB algorithm uses the application of the
backpropagation algorithm to find an approximate
gradient estimator ∇φL. All the weights in these
networks are considered as point estimates. In all the
above methods, variational inference has been applied
to the stochastic hidden units of the autoencoder.
One drawback of having point estimates in deep
neural networks is that the optimisation is much more
difficult on the larger scale, making the network prone
to overfitting.

Uncertainty in Weights of Neural Network: An
interesting extension of work might be to consider
Bayesian neural networks for the parameterisation
of the recognition model. In other words, consider
the weights φ in the inference network as weight
distributions and consider Bayes By Backprop as
shown in (Blundell et al., 2015). It considers intro-
ducing uncertainty in the weights of the network, and
perform variational approximation for exact Bayesian
updates. It might be interesting to analyse how
uncertainty in the weights might affect the methods
considered above, as the inference network would now
have weight distributions.

Probabilistic Backpropagation: As discussed
above, backpropagation needs to be used for the in-
ference network to estimate an approximation to the
gradient ∇φL. If we want to consider Bayesian neural
networks for the recognition model, we can consider
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learning in Bayesian neural networks using the proba-
bilistic backpropagation algorithm (Hernández-Lobato
& Adams, 2015). Probabilistic backpropagation works
by propagating probabilities forward through the net-
work and then propagate the gradients of the marginal
likelihood backwords w.r.t parameters of the posterior
approximation. Using PBP, we can therefore consider
uncertainty in the weights of the inference network,
and analyse how the uncertainty calibration in infer-
ence network affects performance in scalabale varia-
tional inference in deep directed generative models.

7. Summary

In this work, we have therefore provided a unifying
review and comparison of different methods for train-
ing directed latent variable models. We compared the
variance reduction techniques for obtaining better gra-
dient estimates for maximizing the lower bound esti-
mator of the marginal log-likelihood in deep genera-
tive models. All the algorithms considered training an
auxiliary neural network to perform inference by op-
timizing the variational bound. The algorithms con-
sidered joint optimisation of the generative and the
recognition model. Our experiments were carried out
on the MNIST dataset, and we compared the differ-
ent variance reduction techniques in scalable varia-
tional inference methods. We compared the generality
and flexibility of the different approaches for perform-
ing inference in directed latent variable models. We
compared the different with the Auto-Encoding Vari-
ational Bayes (AEVB) method for performing approx-
imate inference in directed generative models.
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